右手系(みぎてけい、英: right-handed system)または正系(せいけい、positive-oriented system)は、線型代数学における座標系で、右手の法則(right-hand rule)に従うものを指し、左手系と区別される。多くの分野では右手系が標準とされるが、測量の分野では左手系が標準である。

右手系・左手系という性質は、直交座標系とは限らない座標系に対しても考えられる。より抽象的には、順序付けられた基底に対して定義される。また、3次元に限らず、2次元以上の任意の次元のユークリッド空間に対しても定義される。

定義

n ≥ 2 とする。n 次元ユークリッド空間 Rn において、j 番目の座標が 1 でその他が 0 であるベクトルを、ej と表すこととする。<e1, …, en> は、Rn の標準的な基底である。任意に2通りの基底 A := <a1, …, an> と B := <b1, …, bn> を取ったとき、その間の変換行列は正則行列となる。その行列式が正であるときに AB は同値であるとして同値関係を定義すると、基底全体の集合はちょうど2つの同値類に類別される。標準的な基底と同値である基底は右手系であるといい、同値でない基底は左手系であるという。

性質

  • 標準的な基底は右手系である。
  • <a1, …, an> が右手系であるとき、その中の2つのベクトルの順序を入れ替えたもの、例えば <a2, a1, a3, …, an> は左手系になる。より一般に、n 次対称群の元 σ に対し、<aσ(1), …, aσ(n)> が右手系であることと、σ の符号が 1 であることは同値である。
  • 基底 A = <a1, …, an> に対し、n 次正方行列 (a1, …, an) の行列式が正ならば A は右手系であり、負ならば左手系である。

一般のベクトル空間

VR 上の n 次元ベクトル空間とする。Rn の場合と同様に、V の基底全体の集合も、2つの同値類に類別される。そのどちらの元を右手系と呼び、どちらの元を左手系と呼ぶべきかは自然には定まらない。同型写像 φ RnV をひとつ定めたならば、<φ(e1), …, φ(en)> と同値である基底を右手系と呼ぶことはできる。

測量・測地学における左手系

測量、航海術、地理学、測地学などの分野では、左手系の使用が標準的であり、北基準式で、x 軸が北方向(緯度の正方向であり方位角の基準方向)、y 軸が東方向となる(→平面直角座標系)。

関連項目

  • 向き
  • キラリティー
  • クロス積

脚注

参考文献

  • 『数学入門辞典』岩波書店、2005年、ISBN 978-4000802093
  • 齋藤正彦『線型代数入門』東京大学出版会、1995年、ISBN 978-4130620017

笛卡尔坐标系左手坐标系与右手坐标系[转] AI备忘录

気まぐれに 3DCG Blender 右手・左手座標系と回転の向き

左手坐标系 vs 右手坐标系 知乎

右手系3次元座標とベクトルの外積の定義と公式 Rollpie

直線運動と座標系(右手の法則)について丁寧にわかりやすく解説!【マシニングセンタの基礎】【滝本技研工業株式会社樹脂加工作業マニュアル